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The orbital motions in surface gravity waves are of interest for analysing wave 
records made by accelerometer buoys. In this paper we derive some exact expressions 
for the first, second and third cumulants of the vertical orbital displacements in a 
regular Stokes wave of finite amplitude in terms of previously known integral 
quantities of the wave: the kinetic and potential energies, the phase speed c and the 
mass-transport velocity U at the free surface. These results generalize a remarkably 
simple relation found previously between the Lagrangian-mean surface level and the 
product Uc. 

Expansions are given in powers of the wave steepness parameter ak which show 
that the third Lagrangian curnulant is very small - of order (ak)s, indicating a high 
degree of vertical symmetry in the orbit. This contrasts with the situation in random 
waves, where the third cumulant is of order ( ~ k ) ~  only. It is shown that the increased 
skewness in random waves is due mainly to an O(ak)z shift in the Lagrangian mean 
level of individual waves. Such shifts in mean level may be too gradual to be fully 
detected by some accelerometer buoys. In  that case the apparent skewness will be 
reduced. 

1. Introduction 
With the widespread use of accelerometer buoys for measuring the surface 

elevation in ocean waves, there is some interest in understanding the Lagrangian 
properties of surface gravity waves. Recently a remarkable exact relation was found 
between the Lagrangian-mean elevation ?;iL, the Eulerian-mean elevation ?jE and the 
horizontal mass-transport velocity U at the free surface, namely 

where c is the phase speed and g denotes gravity. This was proved in Longuet-Higgins 
(1986), and is valid for uniform Stokes waves of any finite steepness ak. 

The purpose of the present note is, first, to point out that the second and third 
moments of yL can likewise be related exactly to the mass-transport velocity and to 
other known integral quantities of the motion, such as the kinetic and potential 
energies. This is done in $3, below. 

A second purpose is to evaluate the Lagrangian cumulants numerically and derive 
their expansions in powers of ak ($54 and 5) .  In  particular it is found that the third 
cumulant of the Lagrangian elevation qL is very small indeed-of order (ak)g, 
implying that the particle orbit is highly symmetric in the vertical direction. 
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OT-" I 

@ = O  o=Le 

I-- L = 2 x / k  -4 
FIQURE 1. Coordinates and notation for a Stokes wave in deep water. 

The situation in random waves is discussed in $6. Paradoxically, it  was shown by 
Srokosz & Longuet-Higgins (1986) that in this situation the third Lagrangian 
cumulant is of lower order - (ak)' not ( c ~ k ) ~ .  Our analysis confirms the physical 
explanation given in that paper. For, the local mean level of the Lagrangian orbit 
is displaced by O ( U ~ ) ~  from the overall mean level TL. It follows that the third moment 
about TL is O ( U ~ ) ~  only. 

Practical implications of the results are discussed in $7. 

2. Uniform Stokes waves 
Consider a regular train of irrotational gravity waves in an inviscid, incompressible 

fluid of uniform density, and infinite depth, as in figure 1. Take rectangular axes 
travelling with the phase-speed c, the origin 0 being above a wave crest, at  a level 
such that in Bernoulli's equation 

+ hs + gy = constant 
P 

the constant on the right vanishes. Here p denotes the pressure, p the density and 
q the particle speed. A t  the free surface p vanishes and so if 7 denotes the surface 
elevation we have 

By the argument given in Lamb (1932, p. 420), the Eulerian mean level is given by 

k2+gq = 0. (2.2) 

The second Eulerian moment about the mean is by definition 

2 v  
( Y E - ~ E ) '  = 7' 

where V is the potential energy density. Hence 

For the third and higher moments there appear to be no simple closed expressions. 
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Consider now the Lagrangian moments. If t denotes the time following a particle 
we have in general 

where @ is the velocity potential in the steady motion. Thus the Lagrangian wave 
period is 

dt = q-,d@ (2.6) 

T L  = Jdt = Jq-, d@, (2.7 1 

the integral being taken over a complete orbit, or a wavelength of the steady motion. 
The rth Lagrangian moment of 7 is, by definition, 

by (2.6). Substituting for q2 from (2.2) we find 

In the particular case r = 1 we have, since 

d@ = C L  = c2TE I 
(where TE is the Eulerian wave period), that 

But if U denotes the mass-transport velocity at  the surface, then 

(2.10) 

(2.11) 

(2.12) 

and so subtracting (2.11) from (2.3) we get the result (1.1). We shall now consider 
higher values of r .  

3. Higher moments 
It is convenient to set g = 1, k = 1 and to introduce the Fourier expansions 

where @ is the velocity potential in the steady motion and the a, are the well-known 
Stokes coefficients. As in Longuet-Higgins (1985) we may also define the quantities 

'I J = $(al+a2,+ ...), 

K = $(al b, + a, b, + . . .), 1 
where bn = m,, n 2 1. It is known that 
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and also that 2T = c2K, 

2 V  = J+2c2K+P,  

T being the kinetic energy density (see Longuet-Higgins 1984, 1985). 
Consider the case r = 2. From (2.9) we have 

and so by (3.1) and (2.10) 

Using (3.3) we may write this as 
- T 
7: = +9J (&C"+K) 

TL 
- 

or from (3.4) q i  = &9 

(3.4) 

(Alternatively in (3.5) we may note that @ = $-cx, hence d@ = dq5-cdx, and 

Similarly in the case r = 3 we have from (2.9) 
then use the expression j 7 d$ for the kinetic energy T.) 

Substitution from the series (3.1) then gives 

- T & = -+' 3 (Q:+ J) .  
TL 

Using (3.3) and (3.4) we obtain 

- T 
T& = -$' 3 (6V-2T+$'). 

TL 

(3.10) 

(3.11) 

- Since TE/TL is already given in terms of U/c by (2.12), (3.8) and (3.1 1) express both 
?& and in terms of c2, T, V and Ulc. 

It may be noted that if we complete the definitions (3.2) by writing 

N = +(b:+b:+ ...), (3.12) 

(3.13) 4-2 = x2 + 2 M %d then since 

we have from (3.1), on substitution in (2.7), 

L 
TL=; ( l + b f + b i +  ...), 

cf. Ursell (1953). Hence 

(3.14) 

(3.15) 

and (3.16) 
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ak 

0 
.1 
.2 
.3 
.35 
.4 
.42 
.443 16 

CZ-1 

.01005 
,04081 
. O M  15 
.13002 
.17121 
.187 19 
.19308 

0 

J K N 
0 0 0 
.00490 .00495 .00505 
.01837 .01916 .02088 
.03655 .04040 .05028 
.04512 .05210 .07309 
.05100 .06236 .01510 
.05162 .06487 .12491 
.05012 .OM190 .18830 

T 

0 
.002 50 
.00997 
.022 10 
.029 44 
.03652 
.03851 
.03829 

V 

0 
.00250 
.00977 
.02110 
.02760 
.03349 
.03498 
.03457 

UlC 
0 

.01000 

.04009 

.09137 

.12691 

.17369 

.19988 

.27357 

KLZ 

.00500 

.01999 

.04493 

.06108 

.07939 

.087 16 

.09854 

0 

TABLE 1. Parameters of uniform gravity waves in deep water 

KL3 

.m 

.OOOo1 

.Ooo 10 

.OOO31 

.00071 

.OOO88 

.00143 

0 

Altogether, the three parameters J, K and N can be expressed in terms of physical 
quantities by 

J = 6V-4T- - ,  
c4 

2T 

1 
2 

K = 4 ,  

N 5 - (c/ U- 1). 

4. The Lagrangian cumulants 
For further progress it is convenient to set 

A = -+z,,, 

B = l - - - ,  
C 

so that we have 

(3.17) 

It follows immediately that the fist  three Lagrangian cumulants are given by 

K L ~  = 0, 1 - 
K L ~  = &-?ji; = BC(A-BC),  

- -  
K L ~  = 7:- 31: 7~ + 27; 

= - B C [ ( A - B C ) ( A - 2 B C ) + J J . J  

(4.3) 

Numerical values of c8, J, K, N ,  T ,  V and U/c  are given in table 1, for selected 
values of the wave amplitude 

For a = 0.1,0.2,0.3,0.35,0.4 and 0.42 we used the method of computation described 
in Longuet-Higgins (1985). The values for the limiting wave a = 0.443. .  . are derived 

a = a,+a,+a,+ .... (4.4) 
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0 0.2 0.4 
ak 

FIQURE 2. The mass-transport velocity U at the free surface of an irrotational gravity wave, as 
a function of the wave steepness parameter ak. -, Exact theory, equation (3.16); ----, 
small-amplitude approximation, U / c  = (ak)2. 

from the values of c2, T and V given by Williams (1981), and the value of U/c  found 
by Longuet-Higgins (1979). 

The ratio U / c  is shown graphically by the full curve in figure 2. Near the limiting 
steepness amax = 0.443 . . . the theory of the almost-highest wave (Longuet-Higgins 
1979, 1986) indicates that  (TL)max-TL varies like eTE where E is a small parameter 
proportional to (amax -a)i. It follows that the tangent to the curve of U l c  at a = a,,, 
must be vertical. 

The behaviour of the other parameters c2, T ,  V ,  etc. in the neighbourhood of the 
limiting steepness is known to be oscillatory (Longuet-Higgins & Fox 1978) and may 
be determined from the asymptotic formulae given in that paper. 

The cumulants K~~ and K~~ are tabulated also on the right of table 1. From the 
final column it will be seen how very small is the third cumulant K L ~ .  Even for the 
steepest wave, i t  is of order only. I n  this extreme case, the coefficient of skewness 

K L 3  
hL3 = I 

K i 2  
is still less than five percent. 

(4.5) 

5. Series expansions 
For waves of low or moderate steepness ak i t  is often convenient to have 

approximate expressions for the wave parameters in powers of ak. The simplest way 
to  obtain such expansions is through the system of equations 

O, I a, + a, b, +al b, + a2 b3 + . . . = 

a,+albl+a,b2+a,b3+. . .  = 0, 

a3+a,b,+alb,+a,b3+.. .  = 0, 
... 
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found by Longuet-Higgins (1978). Using the expansion procedure given there, and 
setting k = 1, we easily obtain 

a, = - 1 -2a2++4+ ... ) \  
a, = a-i3z3-&a5+ ...) 
a, =a2-3z4+ ..., 
a3 = i3z3-w5+ ...) 
u ~ = + ~ + . . . ,  

a5 = ? 3 z 5 +  ...) 

i 

as far as terms in a5. From the definitions of 53 we than have 

J = +2-a4-&6+...  , 

K = + 2 - ~ 4 - + 6 + . . . ,  

N=+2++4+ga6+ ..., 

c2-1 = a2 ++4+$3+..., 

T = p  -*a+ ... , 
V = + , - + z 4 - * 6 + . . . ,  

++&a+ ... . 

from which it follows that 

u/c = a2 

(5.3) 

The first three expansions agree with previously known results (Longuet-Higgins 
1975, $6). The fourth of equations (5.4) shows that for moderate values of a the 
approximation U/c = a2 is very close indeed (see figure 2). 

Lastly from (4.2) and (4.3) we have for the mean 

(5.5) 
- q L = - f + + 4 + 3 9 + . . . ,  

and for the second and third cumulants 

These show that both ;jlL and K ~ ,  are given accurately by their lowest-order terms. 
The most notable feature, however is the smallness of the third cumulant K L ~ ,  which 
is of order a6 only. This indicates a remarkable degree of symmetry, with a coefficient 
of skewness hL3 = a3/85 only. 

Equations (5.5) and (5.6) may be compared with the Eulerian quantities 

(5.7) 
- qE = -g-+2-+24--+a"+... 

and 

which differ significantly from KL, and K L ~ .  The third moment, in particular is an order 
a4) not a6, so that the coefficient of skewness hE3 = 3a/b, relatively large compared 
to the Lagrangian skewness. 
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6. Random waves 
The above results apply strictly to waves of uniform amplitude a. In random waves 

the conclusions are somewhat different. If we assume, as in Srokosz & Longuet- 
Higgins (1986), that the dominant waves have a fairly narrow spectrum, with a 
Rayleigh distribution of wave amplitudes a,  then in deep water it can be shown (see 
Longuet-Higgins & Stewart 1964) that i t  is the Eulerian mean level ?;iE that is 
constant to order a2, not the Lagrangian mean ?jL. These two levels differ, as we have 
seen, by an amount 

A = V L - V E  = $' (6.1) 

to lowest order. Now the local contributions of a wave of amplitude a to the 
Lagrangian moments about the Eulerian mean level rE are clearly 

the largest contribution to mL3 coming from 3~~~ A ,  since K L ~  is of order a6 only. 

average the expressions (6.2) with respect to the Rayleigh density 
To find the total contribution to the moments GL,. for non-uniform waves we 

in which a denotes the root-mean-square wave amplitude: 

a = (iP)):. (6-4) 

(Here we use a tilde to denote the average over many wave groups.) Thus we 
obtain 

GLl = +a2, rEL2 = ia2, GL3 = #a4. (6.5) 

Finally, to find the corresponding cumulants, which to third order are simply 
moments about the mean &ff), we have 

tLl = 0 (by definition), 

Hence the Lagrangian skewness, in random waves, is of order a4, not a6. 
The above analysis confirms the physical interpretation given by Srokosz & 

Longuet-Higgins (1986). For, the Lagrangian orbits are individually highly sym- 
metric, in waves of any given amplitude, the third moments being of order d .  However, 
the larger waves make a contribution whose mean is shifted positively by order a2 
from the overall mean. Thus the 'tails' of the overall distribution are shifted 
relatively to the right, producing a positive third cumulant and a positive coefficient 
of skewness. 
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7. Conclusions and applications 
We have shown that for regular Stokes waves in deep water the Lagrangian 

moments and cumulants are given exactly by the formulae (4.2) and (4.3), in which 
A, B, C and J are previously known integral quantities of the motion. These lead 
directly to the expansions (5.6) which demonstrate immediately the smallness of K~~ 

and consequently the high degree of symmetry in the vertical Lagrangian 
displacement. 

However, in a random sea, despite the symmetry in the individual orbits, the 
Lagrangian skewness is much greater; theoretically it is equal to the Eulerian 
skewness, to lowest order. We re-emphasize, however, that the result is valid only 
if the integrating circuit used with the accelerometer has a time constant that is long 
compared to the wave groups. Otherwise the measured skewness will be reduced by 
an amount that is almost proportional to the frequency response at  the mean group 
length of the waves. 

As pointed out elsewhere (Longuet-Higgins 1986; Srokosz & Longuet-Higgins 
1986) both the mean level VL and the skewness parameter hE3 may be of importance 
in applications of remote sensing of the oceans from aircraft and satellites. In this 
connection we note that the precise formula (1.1) may be quite useful since i t  can 
readily be generalized to random seas, to order a2, and the surface mass-transport 
velocity U is easily measured from aerial observations, at least in swell. 
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